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1
MEMORY SHARING IN GRAPHICS
PROCESSING UNIT

TECHNICAL FIELD

This disclosure relates to processing data using a graphics
processing unit (GPU).

BACKGROUND

Graphics processing devices may be implemented to carry
out a variety of image processing or other general purpose
processing applications. For example, a graphics processing
unit (GPU, sometimes referred to as a general purpose graph-
ics processing unit (GPGPU), may execute applications that
benefit from a high degree of parallelism, such as color cor-
rection algorithms, face detection algorithms, pattern recog-
nition algorithms, augmented reality applications, a variety of
algorithm applications (e.g., wavelet transforms, Fourier
transforms, and the like), or a variety of other applications.

In general, GPUs are designed to process a series of
instructions, which may be referred to as shader instructions,
using one or more shader processors residing in the GPU. In
an example image processing application, shader instructions
may define one or more mathematical operations to be per-
formed by the shader processors on the pixels that make up
the image. By applying a shader instruction to a pixel, the
pixel value is changed or evaluated according to the math-
ematical operation defined by the shader instruction.

Shader instructions may be organized into shader program
code known as a kernel. A kernel may define a function or task
that is performed by the GPU. In order to execute a kernel, the
program code is divided into work items (e.g., a basic unit of
work in a GPU), which are organized into one or more work-
groups (e.g., a set of work items).

SUMMARY

In general, aspects of this disclosure are related to genera-
tion and processing of kernel and workgroup execution orders
for graphics processing. Kernel and workgroup execution
orders may provide management of memory resources asso-
ciated with a shader processor (SP) of a graphics processing
unit (GPU). For example, kernel and workgroup execution
orders allow data stored in local memory resources of an SP
to be shared by workgroups of different kernels. In one
example, aspects of this disclosure are directed to a method of
processing data with a graphics processing unit (GPU). The
method includes receiving input defining execution orders for
a shader processor, wherein the execution orders comprise a
plurality of kernel designations and a plurality of workgroup
designations. The method also includes assigning work-
groups of kernels identified in the plurality of workgroup
designations and the plurality of kernel designations to the
shader processor. The method also includes executing, by the
shader processor, the workgroups of kernels identified in the
plurality of workgroup designations and the plurality of ker-
nel designations to process input data.

In another example, aspects of this disclosure are directed
to a graphics processing unit (GPU) comprising a sequencer
module. The sequencer module is configured to receive input
defining execution orders for a shader processor, wherein the
execution orders comprise a plurality of kernel designations
and a plurality of workgroup designations. The sequencer
module is also configured to assign workgroups of kernels
identified in the plurality of workgroup designations and the
plurality of kernel designations to the shader processor. The
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2

shader processor is configured to execute the workgroups of
kernels identified in the plurality of workgroup designations
and the plurality of kernel designations to process input data.

In another example, aspects of this disclosure are directed
to a computer-readable storage medium encoded with
instructions for causing one or more programmable proces-
sors of a computing device to receive input defining execution
orders for a shader processor, wherein the execution orders
comprise a plurality of kernel designations and a plurality of
workgroup designations. The instructions also cause one or
more programmable processors of a computing device to
assign workgroups of kernels identified in the plurality of
workgroup designations and the plurality of kernel designa-
tions to the shader processor. The instructions also cause one
or more programmable processors of a computing device to
execute, by the shader processor, the workgroups of kernels
identified in the plurality of workgroup designations and the
plurality of kernel designations to process input data.

In another example, aspects of this disclosure are directed
to a graphics processing unit (GPU) comprising a means for
receiving input defining execution orders for a shader proces-
sor, wherein the execution orders comprise a plurality of
kernel designations and a plurality of workgroup designa-
tions. The GPU also comprises a means for assigning work-
groups of kernels identified in the plurality of workgroup
designations and the plurality of kernel designations to the
shader processor. The GPU also comprises a means for
executing, by the shader processor, the workgroups of kernels
identified in the plurality of workgroup designations and the
plurality of kernel designations to process input data.

The details of one or more examples are set forth in the
accompanying drawings and the description below. Other
features, objects, and advantages will be apparent from the
description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram illustrating a computing device
having a graphics processing unit (GPU) that may be config-
ured to implement aspects of this disclosure.

FIG. 2 is a block diagram illustrating an example image
having image data with associated instructions for processing
the image, which may be executed by a GPU, according to
aspects of the disclosure.

FIG. 3 is a block diagram illustrating an application having
three kernels that can be executed by a GPU, according to
aspects of the disclosure.

FIG. 4 is a block diagram illustrating a GPU that may be
configured to carry out aspects of the disclosure.

FIG. 5 is a block diagram illustrating an example of a
sequencer module that is configured to distribute workgroups
of a first kernel, a second kernel, and a third kernel 146,
according to aspects of the disclosure.

FIG. 6 is a block diagram illustrating an example of a
sequencer module that is configured to distribute workgroups
of'afirst kernel, a second kernel, and a third kernel, according
to aspects of the disclosure.

FIG. 7 is a block diagram illustrating an example of assign-
ing streams of execution orders, according to aspects of the
disclosure.

FIG. 8 is a flow chart illustrating a method of generating
and executing one or more streams of execution orders,
according to aspects of the disclosure.

DETAILED DESCRIPTION

Aspects of this disclosure generally relate to defining and
generating streams of shader instructions for execution by a
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shader processor (SP) of a GPU, which may be implemented
as a GPGPU. Typically, GPUs include a plurality of SPs that
are designed to execute one or more shader programs (re-
ferred to herein as “kernels”). Kernels define functions that
can be implemented to analyze or modify a variety of input
data. Examples include functions for processing relatively
large numerical data sets in parallel. In an image processing
context, functions may include, for example, color correction
algorithms, face detection algorithms, or functions for carry-
ing out augmented reality applications. Other examples
include transform functions, functions for ray tracing, or a
variety of other functions.

Kernels comprise individual work items (e.g., a basic unit
of work in a GPU) that are grouped into workgroups. In an
example in which a GPU is implemented to process an image
(e.g., a frame of video data, computer-generated graphics
image, still image, and the like), the input data is the image
and the work items are configured to analyze or modify pixels
of'the image. A plurality of work items can be organized into
workgroups (e.g., a set of work items). Accordingly, in the
image processing example, workgroups may include instruc-
tions related to a particular group of pixels in an image.

When executing the kernels, a GPU loads the input data
associated with a workgroup into local memory of an SP
before the SP can execute the workgroup. Generally, when a
GPU executes a kernel, the GPU assigns workgroups of the
kernel to SPs without identifying or controlling which SP
executes a particular workgroup. For example, a GPU may
include hardware that distributes workgroups to SPs in a fixed
pattern that is not configurable by a GPU application devel-
oper (e.g., computer programmer). In such an example, the
GPU sequentially executes an application having multiple
kernels by evenly distributing and executing all workgroups
associated with a particular kernel prior to moving on to the
next kernel.

Workgroup data typically cannot be shared between SPs.
For example, SPs are typically discrete and physically sepa-
rate units within a GPU, and a GPU application developer
does not control which SP executes a particular workgroup.
Accordingly, in an application having multiple kernels that
process the same or substantially the same input data, the
input data associated with a particular workgroup may need to
be loaded into local memory of different SPs. For example,
without the ability to control which SP of the GPU executes a
particular workgroup of a particular kernel, a workgroup of a
first kernel having the same input data as a workgroup of a
second kernel may be processed by different SPs of the GPU.

Aspects of the disclosure relate to generating and process-
ing kernel and workgroup execution orders. Kernel and work-
group execution orders support management of local memory
resources associated with an SP of a GPU. For example,
kernel and workgroup execution orders executed by a GPU
allow data stored in SP local memory to be shared by work-
groups of different kernels. Kernel and workgroup execution
orders may be referred to as “instruction streams.” An instruc-
tion stream ties, or virtually links, workgroups and kernels
together such that the input data associated with one work-
group of one kernel can be shared and serially executed by
multiple other kernels using a single SP. By generating the
instruction streams, input data is able to remain in local SP
memory and can be available to workgroups of multiple ker-
nels. Creating instruction streams reduces memory band-
width consumption as well as SP arithmetic logic unit (ALU)
operations, because ALU operations are not necessary for
fetching the same data multiple times.

In some examples, kernel and workgroup execution orders
are useful when a GPU is executing an application having
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multiple kernels that process the same, or substantially the
same, input data. In one example implementation, a GPU may
be implemented to process an image (e.g., a frame of video
data, computer-generated graphics image, still image, and the
like). In this example, a work item may correspond to an
instruction related to a particular pixel of an image. A plural-
ity of work items can be organized into workgroups that
include instructions related to a particular group of pixels of
the image. When processing a workgroup associated with a
group of pixels, the GPU loads the image data associated with
the group of pixels into local memory of an SP.

Without the ability to control which SP of the GPU
executes a particular workgroup, in the image processing
example, executing multiple kernels in succession may cause
the same input image area to be processed by different SPs.
For example, to execute a first kernel, the GPU loads the data
associated with the entire image, one workgroup at a time,
into local memory of the SPs of the GPU for execution. To
execute a second kernel after executing the first kernel, the
GPU reloads the same image data into local memory of the
SPs of the GPU for execution. Accordingly, the input image
data is loaded into local SP memory multiple times, once for
each kernel. The SP local memory input bandwidth consump-
tion for an entire image is approximately equal to the image
data size multiplied by the number of kernels (e.g., a program
for analyzing a 64 MB image having 3 kernels results in 3x64
MB or 192 MB of bandwidth consumed). Without any input
data sharing between kernels and their executed workgroups,
arelatively large amount of memory bandwidth is consumed.

Inthe image processing example, generating and executing
instruction streams allows data associated with a particular
portion of an image to be loaded into local memory resources
of a particular SP once and processed with multiple kernels.
An example program having three kernels (e.g., a first kernel,
a second kernel, and a third kernel) is provided. Data associ-
ated with a first workgroup of a first kernel is loaded into a
particular SP’s local memory and the first workgroup is
executed by the SP. In addition, an instruction stream is pro-
vided that includes kernel and workgroup execution orders,
which direct the same SP to subsequently execute the first
workgroup of a second kernel, followed by the first work-
group of the third kernel. Accordingly, image data associated
with the first workgroup need not be loaded into the particular
SP’s local memory prior to executing the second kernel and
the third kernel. Instead, the second kernel and the third
kernel use the input data previously loaded for the first kernel.
In this way, memory bandwidth consumption may be
reduced, because the data associated with a particular area of
an input image need only be loaded into local SP memory
once and can be processed with multiple kernels. In the three-
kernel example provided above, the memory bandwidth con-
sumption is reduced by two thirds.

Instruction streams can be defined in a variety of ways.
According to some aspects, a user identifies candidate kernels
that would benefit from utilizing instruction streams. For
example, a user may identify kernels that utilize the same
input data multiple times. Utilizing instruction streams may
help to manage local memory resources of SPs by reducing
the number of times input data needs to be loaded into the
local memory resources.

After identifying candidates, the user can define instruc-
tion streams in a program that is executed by a GPU. For
example, GPU application programming is typically per-
formed by an application developer (e.g., a computer pro-
grammer) with an application program interface (API) that
provides a standard software interface that can run on mul-
tiple platforms, operating systems, and hardware. Examples
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of APIs include Open Graphics Library (“OpenGL,” version
4.1 released Jul. 26, 2010 and publically available), Compute
Unified Device Architecture (“CUDA” developed by
NVIDIA Corporation, version 3.2 released Sep. 17, 2010),
and DirectX (developed by Microsoft, Inc., version 11
released Oct. 27, 2009). In general, an API includes a prede-
termined, standardized set of commands that are executed by
associated hardware. API commands allow a user to instruct
hardware components of a GPU to execute commands with-
out user knowledge as to the specifics of the hardware com-
ponents.

Aspects of the disclosure relate to one or more API com-
mands that allow a user to define instruction streams. For
example, one or more APl commands may be developed and
created in design environment. The API commands may then
be included in an API, such as the APIs described above, as a
preconfigured option for users (e.g., computer programmers)
of the API.

A user can implement the preconfigured instruction stream
API commands to designate instruction streams in an appli-
cation that will be executed by a GPU during development
and coding of an application. For example, the instruction
stream AP commands allow the user to designate instruc-
tions (e.g., one or more workgroups) from different kernels of
a multiple-kernel application to be processed sequentially by
a particular SP. Upon executing an application that includes
instruction stream designations, a GPU routes instructions
(e.g., workgroups of different kernels) to an SP of the GPU in
accordance with the received designations.

In another example, an automated system may be imple-
mented to generate instruction streams. For example, a pro-
gram, such as a compiler program, may automatically gener-
ate instruction streams for an application that repetitively
processes the same input data with multiple kernels. In this
example, the program may partition instructions of each ker-
nel so that each group of instructions corresponds to a prede-
termined amount of input data (e.g., a workgroup of instruc-
tions). The program may then generate instruction streams by
linking the groups of instructions from different kernels such
that the input data associated with one group of instructions of
one kernel can be shared and serially executed by multiple
other kernels using a single SP.

In a non-limiting image processing example, a GPU appli-
cation developer may provide the instruction stream generat-
ing program with an input image and an application having
three kernels for processing the image. The instruction stream
generating program can automatically generate instruction
streams based on predefined spatial areas of the image. For
example, the instruction stream generating program may par-
tition instructions of each of the three kernels into groups of
instructions, with each group of instructions corresponding to
a predefined area of the input image. The instruction stream
generating program can then generate instruction streams by
linking the groups of instructions of each of the kernels that
are associated with the same input image area.

For example, a program, such as a compiler program or
other development/analysis program, may identify candidate
kernels that would benefit from implementing instruction
streams. For example, a program may monitor memory
access patterns and identify data that is used by more than one
kernel. In this example, the program may monitor and log the
read/write access patterns associated with workgroups of an
application having multiple kernels. After logging, the pro-
gram can detect input/output dependency of respective work-
groups of each kernel. That is, the program can determine
which workgroups of the multiple kernel application utilize
the same input data. Based on this data sharing information,
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instruction stream designations can be inserted into the appli-
cation that facilitate workgroups from different kernels of a
multiple-kernel application being processed sequentially by a
particular SP. For example, code can be inserted into the
application that instructs a GPU to execute workgroups from
different kernels that share the same input data to be executed
sequentially by the same SP.

The program for identifying candidate kernels and desig-
nating workgroups of different kernels to an instruction
stream may be executed during application development, or
“on the fly” during GPU application execution. For example,
according to some aspects, a GPU application developer may
implement the program for identifying candidate kernels and
designating workgroups of different kernels to an instruction
stream. The developed GPU application may then include the
instruction stream designations that will be executed by a
GPU. In another example, a host processor or GPU of a
computing device may implement the program for identify-
ing candidate kernels and designating workgroups of difter-
ent kernels to an instruction stream “on the fly” while execut-
ing a GPU application.

FIG. 1 is a block diagram illustrating a computing device
20 that may be configured to implement aspects of this dis-
closure. As shown in FIG. 1, computing device 20 includes a
host processor 24, a storage device 28, a memory 32, a net-
work module 36, a user interface 40, and a display 44. Com-
puting device 20 also includes a graphics processing unit
(GPU) 48.

Computing device 20 may, in some examples, include or be
a part of a portable computing device (e.g. mobile phone,
netbook, laptop, tablet device, digital media player, gaming
device, or other portable computing device). Alternatively,
computing device 20 may be configured as a desktop com-
puter or other stationary computing device. Computing
device 20 may include additional components not shown in
FIG. 1 for purposes of clarity. For example, computing device
20 may include one or more communication bridges for trans-
ferring data between components of the computing device 20.
Moreover, the components of computing device 20 shown in
FIG. 1 may not be necessary in every example of computing
device 20. For example, user interface 40 and display 44 may
be external to computing device 20, e.g., in examples where
computing device 20 is a desktop computer.

Host processor 24 may include any one or more of a micro-
processor, a controller, a digital signal processor (DSP), an
application specific integrated circuit (ASIC), a field-pro-
grammable gate array (FPGA), or equivalent discrete or inte-
grated logic circuitry. Additionally, the functions attributed to
host processor 24, in this disclosure, may be embodied as
software, firmware, hardware or any combination thereof.

Host processor 24 processes instructions for execution
within computing device 20. Host processor 24 may be
capable of processing instructions stored on storage device 28
or instructions stored in memory 32. Example applications
include applications for processing viewable images (e.g.,
filtering images, analyzing images for predefined features,
and the like). Host processor 24 may execute the one or more
applications based on a selection by a user via user interface
40. In some examples, host processor 24 may execute the one
or more applications without user interaction.

According to some aspects of the disclosure, and as
described in greater detail below with respectto GPU 48, host
processor 24 may collaborate with GPU 48 to execute various
tasks associated with one or more applications. For example,
host processor 24 may initialize execution of an application
and offload or delegate certain processing functions associ-
ated with the application to GPU 48. In an example, host
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processor 24 may initialize execution of an image processing
application, and offload certain processing functions associ-
ated with the application to GPU 48.

Storage device 28 may include one or more computer-
readable storage media. Storage device 28 may be configured
for long-term storage of information. In some examples, stor-
age device 28 may include non-volatile storage elements.
Examples of such non-volatile storage elements may include
magnetic hard discs, optical discs, floppy discs, flash memo-
ries, or forms of electrically programmable memories
(EPROM) or electrically erasable and programmable (EE-
PROM) memories. Storage device 28 may, in some examples,
be considered a non-transitory storage medium. The term
“non-transitory” may indicate that the storage medium is not
embodied in a carrier wave or a propagated signal. However,
the term “non-transitory” should not be interpreted to mean
that storage device 28 is non-movable. As one example, stor-
age device 28 may be removed from computing device 20,
and moved to another device. As another example, a storage
device, substantially similar to storage device 28, may be
inserted into computing device 20.

Storage device 28 may store instructions for execution of
one or more applications by host processor 24 or GPU 48.
Storage device 28 may also store data for use by host proces-
sor 24 or GPU 48. For example, storage device 28 may store
image data for processing by host processor 24 or GPU 48.

Memory 32 may be configured to store information within
computing device 20 during operation. In some examples,
memory 32 is a temporary memory, meaning that a primary
purpose of memory 32 is not long-term storage. Memory 32
may, in some examples, be described as a computer-readable
storage medium. Accordingly, memory 32 may also be con-
sidered “non-transitory,” despite storing data that can change
over time. Memory 32 may also, in some examples, be
described as a volatile memory, meaning that memory 32
does not maintain stored contents when the computer is
turned off. Examples of volatile memories include random
access memories (RAM), dynamic random access memories
(DRAM), static random access memories (SRAM), and other
forms of volatile memories known in the art.

In some examples, memory 32 may be used to store pro-
gram instructions for execution by host processor 24 or GPU
48. Memory 32 may be used by software or applications
running on computing device 20 to temporarily store infor-
mation during program execution. As such, memory 32 may
be accessed by other components of computing device 20
such as host processor 24 and GPU 48.

Computing device 20 may utilize network module 36 to
communicate with external devices via one or more networks,
such as one or more wireless networks. Network module 36
may be a network interface card, such as an Ethernet card, an
optical transceiver, a radio frequency transceiver, or any other
type of device that can send and receive information. In some
examples, computing device 20 may utilize network module
36 to wirelessly communicate with an external device such as
a server, mobile phone, or other networked computing device.

Computing device 20 also includes user interface 40.
Examples of user interface 40 include, but are not limited to,
a trackball, a mouse, a keyboard, and other types of input
devices. User interface 40 may also include a touch-sensitive
screen that is incorporated as a part of display 44. Display 44
may comprise a liquid crystal display (LCD), an organic light
emitting diode (OLED) display, a plasma display, or another
type of display device.

GPU 48 of computing device 20 may be a dedicated hard-
ware unit having fixed function and programmable compo-
nents for executing GPU applications. GPU 48 may also
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include a DSP, a general purpose microprocessor, an ASIC, an
FPGA, or other equivalent integrated or discrete logic cir-
cuitry. GPU 48 may also include other components, such as
dedicated memory, as described in greater detail with respect
to FIG. 4. Furthermore, although shown as separate compo-
nents in FIG. 1, in some examples, GPU 48 may be formed as
part of host processor 24. GPU 48 may be configured to
utilize processing techniques in accordance with a variety of
application programming interfaces (APIs). For example, a
user may program an application to be executed by GPU 48
using a standard software interface that can run on multiple
platforms, operating systems, and hardware. In some
examples, GPU 48 may be configured to utilize applications
generated using OpenCL, CUDA, or the DirectX collection
of APIs (as described above).

According to some examples, GPU 48 can be implemented
as a general purpose graphics processing unit (GPGPU). For
example, GPU 48 may carry out a variety of general purpose
computing functions traditionally carried out by host proces-
sor 24. Examples include a variety of image processing func-
tions, including video decoding and post processing (e.g.,
de-blocking, noise reduction, color correction, and the like)
and other application specific image processing functions
(e.g., facial detection/recognition, pattern recognition, wave-
let transforms, and the like). In some examples, GPU 48 may
collaborate with host processor 24 to execute applications.
For example, host processor 24 may offload certain functions
to GPU 48 by providing GPU 48 with instructions for execu-
tion by GPU 48.

When implemented as a GPGPU, GPU 48 executes shader
programs, referred to herein as kernels. Kernels can be
defined by a user using an API, such as the example APIs
described above. Kernels may comprise individual work
items (e.g., a basic unit of work in a GPU) that are grouped
into workgroups.

According to some aspects of the disclosure, GPU 48
receives and executes kernel and workgroup execution
orders, referred to herein as instruction streams. GPU 48 can
use kernel and workgroup execution orders to manage local
memory resources associated with an SP (e.g., as shown and
described, for example, with respect to FIG. 4) of GPU 48.
For example, GPU 48 may use the kernel and workgroup
execution orders to share data stored in SP local memory with
workgroups of different kernels.

Certain examples provided in the following figures may
refer to a GPU executing work items and workgroups to
perform an image processing application. For example, the
work items and workgroups may be described below as being
associated with pixels of an image (e.g., a frame of video
data). It should be understood, however, that a GPU may be
implemented to carry out a variety of functions other than
image processing functions on a variety of input data (e.g.,
any functions and data sets that benefit from parallel process-
ing). Accordingly, the examples and aspects described below
regarding instruction streams and memory sharing between
workgroups, for example, can be carried out by a GPU per-
forming a variety of other functions on a variety of other input
data sets.

FIG. 2 is a block diagram illustrating an example image 49
having image data with associated instructions for processing
image 49. The instructions are represented as being divided
into a plurality of workgroups 50A-50P (collectively work-
groups 50), with each workgroup including a plurality of
work items 52. The instructions may be executed by a GPU,
such as the GPU 48 shown in FIG. 1. In the example shown in
FIG. 2, instructions for processing image 49 are divided into
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16 workgroups 50, and each workgroup 50 is divided into 64
separate work items 52, although other divisions are possible.

In the example shown in FIG. 2, image 49 is a square,
approximately 16 megabyte (MB) image that includes 1024
pixels. Each of the work items 52 represents a basic unit of
work that can be executed by GPU 48. In some examples,
each work item 52 includes instructions that may be related to
a particular pixel of image 49. Accordingly, when GPU 48
executes a work item 52, the corresponding pixel of image 49
may be processed (e.g., analyzed or changed according to the
instructions). The work items 52 may be organized into work-
groups 50 that include instructions related to a particular
group of pixels of image 49. When processing a workgroup
50, image data related to the particular group of pixels asso-
ciated with the workgroup 50 may be loaded into local
memory resources of an SP (as shown and described, for
example, with respect to FIG. 4 below).

The relationships between pixel data, work items, and
workgroups described with respect to FIG. 2 are merely one
example of possible instruction structures. In other examples,
awork item may relate to more or less than one pixel of image
49.

FIG. 3 is a block diagram illustrating workgroups in an
arrangement of three kernels (e.g., a first kernel 56, a second
kernel 57, and a third kernel 58) that can be executed by a
GPU, such as GPU 48 shown in FIG. 1 Again, each kernel
may be executed to perform a specific function related to a
given application. In some examples, the kernels 56-58 may
define functions for color correction algorithms, face detec-
tion algorithms, pattern recognition algorithms, augmented
reality applications, a variety of algorithm applications (e.g.,
wavelet transforms, Fourier transforms, and the like), or a
variety of other applications. For purposes of illustration only,
FIG. 3 is described with respect to the example GPU 48
shown in FIG. 1 and the example image 49 shown in FIG. 2.

GPU 48 may execute kernels 56-58 to carry out to carry out
a specific task on an image, such as image 49 shown in FIG.
2. For example, GPU 48 may be implemented as a GPGPU to
carry out a variety of functions such as face detection/recog-
nition, pattern recognition, and many other functions suited
for parallel processing (e.g., processing more than one
instruction concurrently). Provided as a simplified, non-lim-
iting example, kernels 56-58 may be implemented in a face
detection application. In this example, GPU 48 can imple-
ment kernels 56-58 to detect one or more faces in image 49.
Each of the kernels 56-58 may be configured to perform a
specific face detection related function. Such kernels 56-58
may be referred to as “classifiers.” That is, the kernels 56-58
classify pixels as having (or not having) a specific, predefined
feature. The kernels 56-58 may include mathematical formu-
las that have been created using a number of training images.
For example, the kernels 56-58 may include mathematical
formulas that have been developed in a testing environment
with a number of predefined images.

In the example shown in FIG. 3, GPU 48 may execute the
kernels 56-58 consecutively to determine whether each pixel
includes the predefined properties set forth in the kernels
56-58. That is, when executed by GPU 48, each kernel 56-58
may return a Boolean value which can be used to identify a
predefined property that is associated with a face. If a certain
pixel exhibits all of the predefined properties set forth in
kernels 56-58 (e.g., the Boolean results associated with the
pixels satisfy some predefined criteria), the pixel is consid-
ered a candidate face pixel. If a certain pixel does not exhibit
the predefined properties set forth in kernels 56-58 (e.g., the
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Boolean results associated with the pixel do not satisfy some
predefined criteria), the pixel is excluded from being consid-
ered a face pixel.

In the image processing example of FIG. 3, the data asso-
ciated with the image 49 is processed three times, one for each
kernel 56-58. For example, workgroups of kernels 56-58 may
correspond to the same input image area of image 49. Simi-
larly numbered workgroups of each of the kernels 56-58 may
include a set of instructions that are to be carried out on the
same input image area of image 49.

Aspects of the disclosure relate to generation of instruc-
tions that tie similarly numbered workgroups of kernels
56-58 into instruction streams for processing by GPU 48. For
example, a user (e.g., computer or application programmer)
or program can create an instruction stream that instructs
GPU 48 to execute Workgroup 0 of kernel 56, followed by
Workgroup 0 of kernel 57, and followed by Workgroup 0 of
kernel 58 using the same SP. In this way, GPU 48 can load the
input area of image 49 that corresponds to Workgroup 0 into
local memory resources of'a shader processor (SP) of GPU 48
(e.g., as shown and described, for example, with respect to
FIG. 4) and process that input image area sequentially using
kernels 56-58.

In some examples, a user (e.g., computer or application
programmer) can define the instruction streams that include
workgroup designations of kernels 56-58 using a preconfig-
ured API command while developing the kernels 56-58. For
example, a user can implement the preconfigured instruction
stream API commands to designate workgroups of kernels
56-58 to instruction streams that will be executed by GPU 48.
Upon executing the instruction stream designations associ-
ated with kernels 56-58, a GPU 48 routes the workgroups of
kernels 56-58 to a certain SP of GPU 48.

In another example, an automated system may be imple-
mented to generate instruction streams that include work-
group designations of kernels 56-58. For example, a complier
program or other program (e.g., a program that traces
memory access patterns from complied low level machine
assembler code) may monitor or analyze memory access
patterns and identify that data associated with a workgroup,
such as Workgroup 0, is accessed multiple times by kernels
56-58. The program may then designate the workgroups to an
instruction stream so that the workgroups are processed
sequentially by an SP of GPU 48. Upon executing the instruc-
tion stream designations associated with kernels 56-58, a
GPU 48 routes the workgroups of kernels 56-58 to a certain
SP of GPU 48.

FIG. 4 is a block diagram illustrating a GPU 60 that may be
configured to carry out aspects of the disclosure. In some
examples, GPU 60 may be configured similarly to, or the
same as, GPU 48 shown in FIG. 1. In the example shown in
FIG. 4, GPU 60 includes a memory 72, shader processors
76A-76C (collectively, SPs 76) having shader processor
memories 78 A-78C, respectively, (collectively, SP memories
78), and a sequencer module 82.

In other examples, GPU 60 may include other components
not shown in FIG. 4 for purposes of clarity. For example, GPU
60 may also include a variety of other modules related to
analyzing and rendering images, such as a rasterizer, texture
units, one or more buffers, or other GPU components. In
addition, GPU 60 may include more or fewer components
than those shown in F1G. 4. For example, GPU 60 is shown in
FIG. 4 as including three SPs 76. In other examples, however,
GPU 60 may include more or fewer SPs than those shown in
FIG. 4.

In some examples, GPU memory 72 may be similar to
memory 32 shown in FIG. 1. For example, GPU memory 72
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may be a temporary computer-readable storage medium.
Examples of GPU memory 72 include random access memo-
ries (RAM), dynamic random access memories (DRAM),
static random access memories (SRAM), and other forms of
memories known in the art. In examples where GPU 60 is
formed as part of another processor, such as host processor 24
shown in FIG. 1, GPU memory 72 may be accessed by com-
ponents other than GPU 60.

GPU memory 72 may be configured as a global memory
for GPU 60. For example, GPU memory 72 may be config-
ured to store instructions and information within GPU 60
during operation (e.g., image data and instructions for pro-
cessing by GPU 60). GPU memory 72 may also be configured
to store results of data that has been processed by GPU 60. In
some examples, GPU memory 72 interfaces with computing
device components that are external to GPU 60. For example,
acomponent of a computing device that incorporates GPU 60
may initially pass data to GPU memory 78 (e.g., one or more
frames of video data) for processing by GPU 60. GPU 60 then
processes the data and stores the results to GPU memory 72.
The results may subsequently be read from GPU memory 72
to another component of the computing device.

SPs 76 may be configured as a programmable pipeline of
processing components. In some examples, SPs 76 may be
referred to as “unified shaders,” in that the SPs 76 can perform
geometry, vertex, or pixel shading operations to render graph-
ics. SPs 76 can also be used in GPGPU applications for
performing general purpose calculations. For example, SPs
76 may be implemented to analyze or otherwise process an
image, such as image 49 shown in F1G. 2. SPs 76 may include
a one or more components not specifically shown in FIG. 4,
such as components for fetching and decoding instructions
and one or more arithmetic logic units (“ALUs”) for carrying
out arithmetic calculations. SPs 76 also include one or more
memories, caches, or registers, such as SP memories 78.

SP memories 78 may be configured as registers or data
caches for storing data that is processed by SPs 76. In some
examples, SP memories 78 are local memories of the SPs 76.
For example, SP memories 78 may be relatively smaller than
global GPU memory 72, and store the data associated with
one or more workgroups prior to execution. The SP memories
78 may have relatively lower latency than GPU memory 72.
For example, SP memories 78 can be accessed by SPs 76
relatively quickly. Latency associated with data transfer from
global memory 72 to SP memories 78, however, is typically
much greater. For example, data transfer from global memory
72 to SP memories 78 may consume multiple clock cycles,
thereby creating a bottleneck and slowing overall perfor-
mance of GPU 60.

SP memories 78 may exchange data with GPU memory 72
when GPU 60 is operating. For example, GPU 60 sends data
associated with one or more workgroups from GPU memory
72 to SP memories 78. Once stored in SP memories 78, SPs
76 operate in parallel to access and process the data stored in
the separate SP memories 78. Upon executing the data, SPs
76 return the results to GPU memory 72. In general, memory
bandwidth between SP memories 78 and SPs 76 is greater
than the memory bandwidth between GPU memory 72 and
SPs 76. Accordingly, an SP 76 can generally read data from an
associated SP memory 78 more quickly than the SP 76 can
read data from GPU memory 72. That is, GPU memory 72
typically exhibits higher latency than that associated with SP
memories 78. Accordingly, it may be beneficial for data to be
transferred to SP memories 78 prior to being executed by SPs
76.

Sequencer module 82 controls instruction and data flow
within GPU 60. Sequencer module 82 may comprise a com-
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bination of fixed function and programmable components for
distributing work items, workgroups and associated data to
SP memories 78 for execution by the SPs 76. Accordingly,
sequencer module 82 manages data transfers between GPU
memory 72 and SPs 76. For purposes of example only, work-
group distribution of sequencer module 82 is described with
respectto the application shown and described with respect to
FIG. 3.

Sequencer module 82 may distribute workgroups in a fixed
distribution pattern without regard to which workgroups are
executed by a particular SP of SPs 76. For example, to process
the example application 54 (shown in FIG. 3) having multiple
kernels 56-68, sequencer module 82 may distribute work-
groups evenly to all SPs 76 of GPU 60. In addition, as
described in greater detail with respect to FIG. 5 below,
sequencer module 82 may distribute all workgroups of a
kernel to the SPs 76 before moving on to the next kernel. For
example, sequencer module 82 may distribute Workgroup 0
of'kernel 56 to SP 76 A, Workgroup 1 of kernel 56 to SP 76B,
Workgroup 2 ofkernel 56 to SP 76C and so on until kernel 56
has been processed by the SPs 76.

In other examples, according to some aspects of the dis-
closure, sequencer module 82 may receive and execute kernel
and workgroup execution orders. For example, sequencer
module 82 may receive the instructions defining instruction
streams that direct sequencer module 82 to distribute work-
groups of kernels to a specific SP of SPs 76. The instruction
streams tie workgroups of different kernels together so that
they are processed by the same SP of SPs 76. The instruction
streams provide a way to manage resources of SP memories
78. For example, by carrying out the instructions that define
the instruction streams, sequencer module 82 allows the input
data associated with one workgroup to be shared and serially
executed by workgroups of multiple other kernels.

Sequencer module 82 can be implemented to carry out
instructions that define instruction streams when GPU 60 is
executing an application having multiple kernels that process
the same, or substantially the same, input data. For example,
as described with respect to FIG. 3, application 54 includes
three kernels 56-58, each kernel having a plurality of associ-
ated workgroups. Workgroup 0 of kernel 56 corresponds to
the same input data as Workgroup 0 of kernel 57 and Work-
group 0 of kernel 58. Accordingly, sequencer module 82 may
sequentially distribute Workgroup 0 of kernels 56-58 to SP
76A. In addition, sequencer module 82 may distribute Work-
group 1 of kernels 56-58 to SP 76B, and so on until all
workgroups of all kernels have been executed by SPs 76.

In this way, sequencer module 82 can manage local
memory resources of SP memories 78. For example, prior to
executing Workgroup 0 of kernel 56, GPU 60 transfers the
input data associated with Workgroup 0 of kernel 56 from
GPU memory 72 to SP memory 78A. After executing Work-
group 0 of kernel 56, and instead of fetching new data for SP
memory 78A, sequencer module 82 directs SP 76 A to execute
Workgroup 0 of kernel 57, followed by Workgroup 0 ofkernel
58. The input data of Workgroup 0 is the same among kernels
56-58, so the data associated with Workgroup 0 can remain in
SP memory 78A and be shared by Workgroup 0 of all three
kernels 56-58.

Executing instruction streams and sharing data between
workgroups of different kernels may provide a local memory
bandwidth savings, as compared to a system that distributes
workgroups in a fixed distribution pattern. For example, shar-
ing data between workgroups of different kernels allows for
less data to be transferred between GPU memory 72 and SP
memories 78. In the three kernel example shown in FIG. 3,
memory bandwidth consumption between GPU memory 72
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and SP memories 78 is reduced by two thirds. Rather than
transferring the data associated with a workgroup, such as
Workgroup 0, to local SP memory three times (e.g., one
transfer for each kernel), GPU 60 can transfer the data asso-
ciated with the workgroup to local SP memory once and share
the data between all three kernels 56-58.

According to some examples of the disclosure, the local
memory bandwidth savings associated with executing
instruction streams may also provide a time savings. For
example, while the SPs may perform the same number cal-
culations associated with the workgroups to execute a given
program, such as program 54, time savings may be achieved
because less data may be transferred between GPU memory
72 and SP memories 78. As described above, data transfer
between GPU memory 72 and SP memories 78 may be a
relatively time intensive process that introduces a bottleneck
into the process of executing the program 54. Accordingly,
reducing the amount of data that is required to be transferred
between GPU memory 72 and SP memories 78 also may
reduce the bottleneck associated with data transfer between
GPU memory 72 and SP memories 78.

The instructions received by sequencer module 82 defining
instruction streams may be generated by a user or may be
automatically generated (e.g., by a compiler program). For
example, a user (e.g., a software developer) may define and
implement instruction streams using an API that includes one
or more instruction stream commands. Upon receiving the
application having the instruction stream commands,
sequencer module 82 executes the instruction stream com-
mands to manage local memory resources associated with the
SPs 76.

The instructions defining instructions streams may be
transmitted to sequencer module 82 by a host processor of a
computing device, such as host processor 24 shown in FIG. 1.
In examples in which GPU 60 is a distinct device (e.g., not
included in a computing device having a host processor),
another processing component may be responsible for trans-
mitting instructions containing instruction streams to
sequencer module 82.

FIG. 5 is a block diagram illustrating an example of a
sequencer module 140 distributing workgroups of a first ker-
nel 142, a second kernel 144, and a third kernel 146 to a first
SP 152A having a first SP memory 156 A, a second SP 152B
having a second SP memory 156B, and a third SP 152C
having a third SP memory 156C (collectively SPs 152 and SP
memories 156). According to some aspects of the disclosure,
sequencer module 140 and SPs 152 may be incorporated in a
GPU, such as GPU 48 shown in FIG. 1 or GPU 60 shown in
FIG. 4.

Sequencer module 140 and SPs 152 may be configured
similarly to, or the same as sequencer module 82 and SPs 76
shown and described with respect to FIG. 4. For example,
sequencer module 140 may be responsible for controlling
instruction and data flow within a GPU. Sequencer module
140 may include a combination of fixed function and pro-
grammable components for distributing work items and
workgroups to SPs 152 and associated SP memories 156.

Sequencer module 140 distributes workgroups of kernels
142-146 in a fixed distribution pattern, without controlling
the specific destination of the workgroups of different ker-
nels. For example, sequencer module 140 distributes work-
groups of the first kernel 142 by sequentially distributing a
first workgroup WGO to SP 152A (as represented by line
160), a second workgroup WG1 to SP 152B (as represented
by line 161), a third workgroup WG2 to SP 152C (as repre-
sented by line 162), and so on until the first kernel 142 has
been distributed and executed. Sequencer module 140 then
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moves on to the second kernel 144 and the third kernel 146
and distributes those workgroups to the SPs 152. For
example, the sequencer module 140 may continue in the fixed
distribution pattern and may distribute all of the workgroups
of the second kernel 144 among the SPs 152. Sequencer
module 140 then may proceed to the third kernel 146 and
distribute all of the workgroups of the third kernel 146 among
the SPs 152.

Without the ability to control which SP 152 executes a
particular workgroup, the data associated with workgroups
may be required to be loaded into more than one of the SP
memories 156. As shown in the example of FIG. 5, in follow-
ing the fixed distribution pattern, after processing the entire
first kernel 142,m sequencer module 140 distributes work-
group WGO of the second kernel 144 to SP 152B (line 161).
Accordingly, the input data associated with WG0 must be
loaded into SP memory 156B. In addition, after processing
the entire second kernel 144, due to the fixed nature of the
distribution pattern, sequencer module 140 distributes work-
group WGO of the third kernel 146 to SP 152C (line 162).
Accordingly, the input data associated with WGO is loaded
into SP memory 156C.

As described above with respect to FIG. 4, the data asso-
ciated with a particular workgroup typically must be loaded
into local memory of an SP before the SP can execute the
workgroup. Without the ability to control which SP 152
executes a particular workgroup, data associated with the
workgroups cannot be shared between kernels. In the
example shown in FIG. 5, the data associated with workgroup
WG0 must be loaded into each of the SP memories 156A,
1568, and 156C at different times prior to processing by the
SPs 152A-152C. Accordingly, the memory bandwidth for the
SPs 152 is equal to three times the input data for each kernel.

FIG. 6 is a block diagram illustrating an example of a
sequencer module 180 distributing workgroups of a first ker-
nel 184, a second kernel 186, and a third kernel 188 to a first
SP 200A having a first SP memory 204 A, a second SP 200B
having a second SP memory 204B, and a third SP 200C
having a third SP memory 204C (collectively SPs 200 and SP
memories 204). According to some aspects of the disclosure,
sequencer module 180 and SPs 200 may be incorporated in a
GPU, such as GPU 48 shown in FIG. 1 or GPU 60 shown in
FIG. 4.

Sequencer module 180 and SPs 200 may be configured
similarly to, or the same as sequencer module 82 and SPs 76
shown and described with respect to FIG. 4. For example,
sequencer module 180 may be responsible for controlling
instruction and data flow within a GPU. Sequencer module
180 may include a combination of fixed function and pro-
grammable components for distributing work items and
workgroups to SP memories 204 for execution by the SPs
200.

According to some aspects of the disclosure, sequencer
module 82 distributes workgroups of kernels 184-188
according to predefined instructions that designate work-
groups to instruction streams. For example, sequencer mod-
ule 82 may be configured to receive instruction streams that
tie workgroups of different kernels together so that they are
executed by the same SP. Accordingly, rather than distribut-
ing workgroups of kernels 184-188 in a fixed pattern (as
shown, for example, in FIG. 5), sequencer module 180 may
be configured to distribute workgroups based on the instruc-
tion streams that tie workgroups of the kernels together.

In the example shown in FIG. 6, sequencer module 180
executes an instruction stream that ties workgroup WGO of
kernel 184 to workgroup WGO of kernel 186, and to work-
group WGO of kernel 188. The workgroups WGO of the
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kernels 184-186 are all associated with the same input data.
By executing the instruction stream, workgroup WGO of the
kernels 184-188 are sequentially processed using SP 200A.
Accordingly, the input data associated with WG0, which may
be the same among kernels 184-188, can be shared among the
workgroups WGO0 of kernels 184-188. For example, the data
associated with workgroup WGO can be loaded into SP
memory 204A, when processing WGO of kernel 184, and
shared by WGO of kernel 186 and WGO of kernel 188.

Retaining data in SP memory 204A and sharing that data
among multiple workgroups provides efficient management
of SP memory 204 A. For example, rather than having to fetch
and transfer new data into SP memory 204A after every
execution of a workgroup, the data can remain in SP memory
204A and be shared by multiple workgroups of multiple
kernels. Accordingly, local memory bandwidth consumption
may be reduced. In the three-kernel example shown in FIG. 6,
local memory bandwidth consumption is reduced by two
thirds, compared to the three-kernel example shown in FIG. 5.

According to some examples of the disclosure, the local
memory bandwidth savings associated with executing
instruction streams also provides a time savings. For
example, while the SPs 200 may perform the same number of
calculations associated with the workgroups as a system that
does not utilize instruction streams to execute a given pro-
gram, time savings may be achieved because less data must be
transferred between a GPU global memory and SP memories
204. Data transfer between GPU global memory and SP
memories 204 may be a relatively time intensive process that
introduces a bottleneck into the process of executing the
kernels 184-188. Accordingly, reducing the amount of data
that is required to be transferred between GPU global
memory and SP memories 204 also reduces the bottleneck
associated with data transfer between GPU global memory
and SP memories 204.

FIG. 7 is ablock diagram illustrating an example of assign-
ing streams of execution orders 240, 244, and 248 to a first SP
252A having a first SP memory 256A, a second SP 252B
having a second SP memory 256B, and a third SP 252C
having a third SP memory 256C (collectively SPs 252 and SP
memories 256). According to some aspects of the disclosure,
the SPs 252 may be incorporated in a GPU, such as GPU 48
shown in FIG. 1 or GPU 60 shown in FIG. 4.

The example shown in FIG. 7 includes three SPs 252
executing workgroups associated with three kernels. It should
be appreciated, however, that streams of execution orders
may be implemented in systems having more or fewer SPs
than those shown in FIG. 7 (e.g., 2 SPs, 10 SPs, 100s of SPs).
In addition, streams of execution orders may link more or
fewer workgroups and kernels together than the three shown
in FIG. 7.

The streams of execution orders, or instruction streams
240-248, may be assigned to SPs 252 by a sequencer module,
such as the sequencer module 82 shown in FIG. 4. The
instruction streams 240-248 virtually ties workgroups of dif-
ferent kernels together so that they are processed by the same
SP. For example, as shown in FIG. 7, instruction stream 240
links Workgroup 0 of'kernel 1 to Workgroup 0 of kernel 2 and
Workgroup 0 of kernel 3. Likewise, instruction stream 244
links Workgroup 1 of'kernel 1 to Workgroup 1 of kernel 2 and
Workgroup 1 of kernel 3, and instruction stream 248 links
Workgroup 2 of kernel 1 to Workgroup 2 of kernel 2 and
Workgroup 2 of kernel 3

In the example shown in FIG. 7, at least some of the input
data associated with the like-numbered workgroups is con-
sistent. For example, the input data associated with Work-
group 0 of'kernel 1 is the same as, or has at least some overlap
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with, the input data associated with Workgroup 0 of kernel 2
and Workgroup 0 of kernel 3. Accordingly, SP 252A can
execute instruction stream 240 by loading the input data
associated with Workgroup 0 into SP memory 256A and
sharing that input data when executing Workgroup 0 of kernel
1, Workgroup 0 of kernel 2, and Workgroup 0 of kernel 3. In
this way, executing instruction stream 240 reduces the
amount of data that is required to be transferred into and out
of SP memory 256A during execution of kernels 1, 2, and 3.
Similar operations may be carried out for SP 252B and SP
memory 256B, and for SP 252C and SP memory 256C.

FIG. 8 is a flow chart illustrating a method 300 of generat-
ing and executing execution orders (e.g., “instruction
streams”), such as streams 240-248 shown in FIG. 7. Accord-
ing to some aspects of the disclosure, method 300 may be
carried out by a GPU, such as GPU 48 shown in FIG. 1 or
GPU 60 shown in FIG. 4. For purposes of illustration only,
portions of the method 300 may be described as being carried
out by the example GPU 60 shown in FIG. 4.

As shown in FIG. 8 candidates for execution order streams
are initially identified (304). According to some aspects, a
user identifies candidate kernels that would benefit from uti-
lizing instruction streams. For example, a user may identify
kernels that utilize the same input data multiple times. In
another example, a program, such as a compiler program,
may identify candidate kernels that would benefit from
implementing instruction streams. For example, a complier
program may monitor memory access patterns and identify
input data that is used by more than one kernel. When input
data is used by more than one kernel of a program, an instruc-
tion stream may be implemented to tie the workgroups that
utilize the same data such that those workgroups are executed
by the same SP. Utilizing instruction streams in this way may
help to manage local memory resources of SPs by reducing
the number of times input data needs to be loaded into the
local memory resources. For example, input data can be
loaded into local memory of an SP once and shared among
multiple workgroups of multiple kernels.

After candidates have been identified, execution order
stream designations are generated (308). A user may define
instruction streams using an API adapted to include instruc-
tion stream commands. For example, APIs such as OpenGL,
CUDA, DirectX, or any other API for creating GPU programs
can be adapted to include one or more commands that allow
auser to designate workgroups and their associated kernels to
instruction streams. In another example, a program, such as a
complier program, may automatically generate instruction
streams after identifying repeated memory access patterns.

After the instruction streams are generated, the execution
order designations are transmitted to and received by a GPU,
such as GPU 60 (312). In some examples, sequencer module
82 may receive input defining execution order streams that
include one or more kernel designations and one or more
workgroup designations. The instruction streams may be
transmitted to sequencer module 82 by a host processor of a
computing device, such as host processor 24 shown in FIG. 1.
In examples in which GPU 60 is a distinct device (e.g., not
included in a computing device having a host processor)
another processing component may be responsible for receiv-
ing the instruction streams and transmitting them to
sequencer module 82.

Sequencer module 82 may implement the execution orders
by assigning the streams to SPs, such as SPs 76 (316). For
example, sequencer module 82 may assign workgroups des-
ignated in an instruction stream to be executed by the same SP
of GPU 60. SPs execute the instruction streams by executing
the instructions designated in the in the execution orders
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(320). For example, an SP sequentially executes the work-
groups designated in the instruction stream. By doing so,
input data associated with the workgroups designated in the
instruction stream can be shared among the workgroups des-
ignated in the instruction stream. Executing the instruction
streams may reduce the amount of data that is required to be
transferred between GPU memory 72 and SP memories 78,
and reduce the overall time required to execute a particular
program.

In the examples provided above, the instruction streams are
described as tying workgroups of difterent kernels together so
that the workgroups of the different kernels are executed
consecutively by the same SP. Tying the workgroups of dif-
ferent kernels together in this way aids in managing the
memory resources associated with the SPs because the data
associated with the workgroups can be shared by multiple
kernels. It should be understood, however, that the term
“workgroup” refers generically to a group of instructions. For
example, a “workgroup” may be referred to in Compute Uni-
fied Device Architecture (“CUDA” developed by NVIDIA
Corporation, version 3.2 released Sep. 17, 2010) as a “thread
block.”

It should also be understood that the workgroup and kernel
designations are provided as an example only. The memory
management aspects of the disclosure may be applied to other
configurations of GPU applications. For example, other GPU
applications may include a single relatively larger “kernel”
that includes instructions that use the same input data more
than once during execution. In such an example, aspects of the
disclosure may still be applied to manage memory resources.
Instruction streams may be created that tie the instructions
together the use the same input data, despite the instructions
belonging to the same kernel.

In one or more examples, the functions described may be
implemented in hardware, software executed on hardware,
firmware executed on hardware, or any combination thereof.
In some examples, instructions stored on a computer-read-
able media may cause the hardware components to perform
their respective functions described above. The computer-
readable media may include computer data storage media.
Data storage media may be any available media that can be
accessed by one or more computers or one or more processors
to retrieve instructions, code and/or data structures for imple-
mentation of the techniques described in this disclosure. By
way of example, and not limitation, such computer-readable
media can comprise RAM, ROM, EEPROM, CD-ROM or
other optical disk storage, magnetic disk storage, or other
magnetic storage devices, flash memory, or any other medium
that can be used to carry or store desired program code in the
form of instructions or data structures and that can be
accessed by a computer. Combinations of the above should
also be included within the scope of computer-readable
media.

The code may be executed by one or more processors, such
as one or more DSPs, general purpose microprocessors,
ASICs, FPGAs, or other equivalent integrated or discrete
logic circuitry. Accordingly, the term “processor,” as used
herein may refer to any of the foregoing structure or any other
structure suitable for implementation of the techniques
described herein. In addition, in some aspects, the function-
ality described herein may be provided within dedicated
hardware and/or software modules configured for encoding
and decoding, or incorporated in a combined codec. Also, the
techniques could be fully implemented in one or more circuits
or logic elements.

The techniques of this disclosure may be implemented in a
wide variety of devices or apparatuses, including a wireless
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handset, an integrated circuit (IC) or a set of ICs (e.g., a chip
set). Various components, modules, or units are described in
this disclosure to emphasize functional aspects of devices
configured to perform the disclosed techniques, but do not
necessarily require realization by different hardware units.
Rather, as described above, various units may be combined by
a collection of interoperative hardware units, including one or
more processors as described above, in conjunction with suit-
able software and/or firmware.
Various examples have been described. These and other
examples are within the scope of the following claims.
The invention claimed is:
1. A method of processing data with a graphics processing
unit (GPU), the method comprising:
receiving execution orders for a first shader processor of a
plurality of shader processors, wherein the execution
orders comprise a plurality of kernel designations and a
plurality of workgroup designations of workgroups
included in the designated kernels, and wherein the
execution orders virtually link workgroups of kernels
identified in the plurality of workgroup designations and
the plurality of kernel designations to operate on input
data associated with the received execution orders;

assigning workgroups of kernels identified in the plurality
of workgroup designations and the plurality of kernel
designations to the first shader processor of the plurality
of shader processors;

storing the input data to memory of the first shader proces-

sor; and

serially executing, by the first shader processor of the plu-

rality of shader processors, the virtually linked work-
groups, including sharing the input data stored to the
memory of the first shader processor during execution of
the virtually linked workgroups and without storing
other input data to the memory of the first shader pro-
cessor during execution of the virtually linked work-
groups.

2. The method of claim 1, wherein the plurality of kernel
designations identify a plurality of kernels, and wherein each
kernel of the plurality of kernels defines a function carried out
by the GPU.

3. The method of claim 1, wherein the plurality of work-
group designations identify a plurality of workgroups, and
wherein each workgroup of the plurality of workgroups com-
prises instructions that are executed on the input data by the
GPU.

4. The method of claim 1, wherein the execution orders
virtually link a first workgroup of a first kernel to a first
workgroup of a second kernel, wherein the first workgroup of
the first kernel and the first workgroup of the second kernel
operate on the input data.

5. The method of claim 4, wherein serially executing the
execution orders comprises executing, by the first shader
processor, the first workgroup of the second kernel after the
first workgroup of the first kernel.

6. The method of claim 1, wherein the input data is asso-
ciated with a group of pixels of an image, such that the
execution orders virtually link the workgroups to operate on
the group of pixels.

7. The method of claim 6, wherein serially executing the
virtually linked workgroups comprises serially executing the
virtually linked workgroups without storing other input data
associated with another group of pixels of the image to the
memory.

8. The method of claim 1, further comprising, in response
to user input, generating the input defining the execution
orders using an application programming interface (API).
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9. A graphics processing unit (GPU) comprising:

a sequencer module configured to receive execution orders
for a first shader processor of a plurality of shader pro-
cessors, wherein the execution orders comprise a plural-
ity of kernel designations and a plurality of workgroup
designations of workgroups included in the designated
kernels, and wherein the execution orders virtually link
workgroups of kernels identified in the plurality of
workgroup designations and the plurality of kernel des-
ignations to operate on input data associated with the
received execution orders;

wherein the sequencer module is configured to assign
workgroups of kernels identified in the plurality of
workgroup designations and the plurality of kernel des-
ignations to the first shader processor of the plurality of
shader processors;

wherein the first shader processor comprises a memory
configured to store the input data; and

wherein the first shader processor of the plurality of shader
processors is configured to serially execute the virtually
linked workgroups, including sharing the input data
stored to the memory of the first shader processor during
execution of the virtually linked workgroups and with-
out storing other input data to the memory of the first
shader processor during execution of the virtually linked
workgroups.

10. The GPU of claim 9, wherein the plurality of kernel
designations identify a plurality of kernels, and wherein each
kernel of the plurality of kernels defines a function carried out
by the GPU.

11. The GPU of claim 9, wherein the plurality of work-
group designations identify a plurality of workgroups, and
wherein each workgroup of the plurality of workgroups com-
prises instructions that are executed on the input data by the
GPU.

12. The GPU of claim 9, wherein the execution orders
virtually link a first workgroup of a first kernel to a first
workgroup of a second kernel, wherein the first workgroup of
the first kernel and the first workgroup of the second kernel
operate on the input data.

13. The GPU of claim 12, wherein the first shader proces-
sor is further configured to serially execute the first work-
group of the second kernel after the first workgroup of the first
kernel.

14. The GPU of claim 9, wherein the input data is associ-
ated with a group of pixels of an image, such that the execu-
tion orders virtually link the workgroups to operate on the
group of pixels.

15. The GPU of claim 14, wherein to serially execute the
virtually linked workgroups, the first shader processor is con-
figured to serially execute the virtually linked workgroups
without storing other input data associated with another
group of pixels of the image to the memory.

16. A graphics processing unit (GPU) comprising:

means for receiving execution orders for a first shader
processor of a plurality of shader processors, wherein
the execution orders comprise a plurality of kernel des-
ignations and a plurality of workgroup designations of
workgroups included in the designated kernels, and
wherein the execution orders virtually link workgroups
of kernels identified in the plurality of workgroup des-
ignations and the plurality of kernel designations to
operate on input data associated with the received execu-
tion orders;

means for assigning workgroups ofkernels identified in the
plurality of workgroup designations and the plurality of
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kernel designations to the first shader processor of the
plurality of shader processors; and

means for storing the input data to memory of the first

shader processor;
means for serially executing the virtually linked work-
groups, including means for sharing the input data stored
to the memory of'the first shader processor during execu-
tion of the virtually linked workgroups and without stor-
ing other input data to the memory of the first shader
processor during execution of the virtually linked work-
groups.
17. The GPU of claim 16, wherein the plurality of kernel
designations identify a plurality of kernels, and wherein each
kernel of the plurality of kernels defines a function carried out
by the GPU.
18. The GPU of claim 16, wherein the plurality of work-
group designations identify a plurality of workgroups, and
wherein each workgroup of the plurality of workgroups com-
prises instructions that are executed on the input data by the
GPU.
19. The GPU of claim 16, wherein the execution orders
virtually link a first workgroup of a first kernel to a first
workgroup of a second kernel, wherein the first workgroup of
the first kernel and the first workgroup of the second kernel
operate on the input data.
20. The GPU of claim 19, wherein the means for serially
executing is further configured to execute the first workgroup
of the second kernel after the first workgroup of the first
kernel.
21. The GPU of claim 16, wherein the means for sharing
the input data is associated with a group of pixels of an image,
such that the execution orders virtually link the workgroups to
operate on the group of pixels.
22. The GPU of claim 21, wherein the means for serially
executing the virtually linked workgroups comprises means
for serially executing the virtually linked workgroups without
storing other input data associated with another group of
pixels of the image to the memory.
23. A non-transitory computer-readable storage medium
encoded with instructions for causing one or more program-
mable processors of a computing device having a graphics
processing unit (GPU) to:
receive execution orders for a first shader processor of a
plurality of shader processors, wherein the execution
orders comprise a plurality of kernel designations and a
plurality of workgroup designations of workgroups
included in the designated kernels, and wherein the
execution orders virtually link workgroups of kernels
identified in the plurality of workgroup designations and
the plurality of kernel designations to operate on input
data associated with the received execution orders;

assign workgroups of kernels identified in the plurality of
workgroup designations and the plurality of kernel des-
ignations to the first shader processor of the plurality of
shader processors;

store the input data to memory of the first shader processor;

and

serially execute, by the first shader processor of the plural-

ity of shader processors, the virtually linked work-
groups, including sharing the input data stored to the
memory of the first shader processor during execution of
the virtually linked workgroups and without storing
other input data to the memory of the first shader pro-
cessor during execution of the virtually linked work-
groups.

24. The non-transitory computer-readable storage medium
of claim 23, wherein the plurality of kernel designations
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identify a plurality of kernels, and wherein each kernel of the
plurality of kernels defines a function carried out by the GPU.

25. The non-transitory computer-readable storage medium
of claim 23, wherein the plurality of workgroup designations
identify a plurality of workgroups, and wherein each work-
group of the plurality of workgroups comprises instructions
that are executed on the input data by the GPU.

26. The non-transitory computer-readable storage medium
of claim 23, wherein the execution orders virtually link a first
workgroup of a first kernel to a first workgroup of a second
kernel, wherein the first workgroup of the first kernel and the
first workgroup ofthe second kernel operate on the input data.

27. The non-transitory computer-readable storage medium
of claim 26, wherein serially executing the execution orders
comprises executing, by the first shader processor, the first
workgroup of the second kernel after the first workgroup of
the first kernel.

28. The non-transitory computer-readable storage medium
of claim 23, wherein the input data is associated with a group
of pixels of an image, such that the execution orders virtually
link the workgroups to operate on the group of pixels.

29. The non-transitory computer-readable storage medium
of claim 28, wherein to serially execute the virtually linked
workgroups, the instructions cause the one or more program-
mable processors to serially execute the virtually linked
workgroups without storing other input data associated with
another group of pixels of the image to the memory.
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